EECS 581 Group 2 Final Project Design

Team Name: STV Robotics
Team Number: Team 2
Team Members and email addresses:
1. Sri Gayatri Sundara Padmanabhan, sri@ku.edu
2. Paul McElroy pcm@ku.edu
3. John McCain johnm.freestate@gmail.com
4. Luke Dercher luke.dercher@gmail.com
Team Meeting time: Monday 1:45 pm
Lab Meeting time: Wednesday 2:00 pm
Contact:
e Paul McElroy: phone # (785) 215-1633
o Luke Dercher: phone # (228) 313-5570
e John McCain: phone # (785) 218-5993
e Sri Gayatri: phone # (408) 963-7928
Project Sponsor (if any): n/a

Project Description (150-250 words)

@® Why is the project being undertaken? Describe an opportunity or problem that the project
is to address.

To enable people with basic programming skills to build and configure a telerobotics platform
utilizing a web-based interface with the ability to connect and control. Applications of our
platform include security cameras, medical robotics, industrial robotics, telepresence, and
more. Our platform will allow robotics hobbyists to take their projects to the next level,
businesses with limited budgets to build custom telerobotics solutions at a lower cost, loved
ones to interact over long distances, and allow employees to work remotely easier.

@® What will be the end result of the project?

The end product of our project will be a telerobotics platform with minimal setup that anyone
can use. Clients can connect from a remote device such as a laptop or mobile device to a
central server through a web application. The server will then connect clients with the available
registered robotic agents. Depending on the agents available and their capabilities, different
configurations will be available for the users to select which will define the user interface for the
robotic agents. Users will be able to configure basic Ul for any connected robot that
implements our system. We intend to complete the project with an example robot &
configurations.

The end result of this project
The end product will consist of a web based platform that exposes a robot facing API for
communication and control, a client facing REST api for configuration and control, and a SPA

mailto:sri@ku.edu
mailto:pcm@ku.edu
mailto:johnm.freestate@gmail.com
mailto:luke.dercher@gmail.com

style web application that uses the client facing REST API and allows for user control of the
whole platform.

Project Milestones

First Semester Goals
e Design and initial documentation of robot-server messaging protocol (Oct 23rd)
e Proof-of-concept implementation of robot-server messaging protocol (Nov 6th)
e Design and creating of the sample robot (Dec 27th)

Second Semester Goals
e Design and proof-of-concept implementation of core server-side services (Feb 28th)
e Proof-of-concept level demonstration of core platform functionality from client REST
API to robot communication (March 15th)
Full implementation and documentation of client side REST API (Mar 26th)
Front end control application implementation (March 30th)
Demonstration of robot-user connection from front end application to robot
communication (April 9th)
e Final documentation and release-ready product (April 14th)
Note: documentation and test coverage will progress alongside development

Gantt Chart

2017 2018
Today
Initial Project
8/21/2017 -9/1/2017

Development (Paul) - 1211, /1
‘Communications Protocol _

8/30/2017- 10/6/2017
Research (Paul) /30/ /61201
Server Costs Research (Paul) I 10/1/2017 - 10/2/2017
C Design h {Paul) H 10/6/2017 - 10/13/2017
ZMQ Proof of Concept (Paul) | ‘10/10}’2017—10}’13;’2017

Technology Selection ﬁsmumu-ana/mu

(John)

Server Architecture Design ﬁ o/1/2017- 10/15/2017
(John) L

(John)

ing Protocol Impl ation (John) B (/152017 1073072017
Server-Robot Security Research (Sri) i 10/10/2017 -10/13/2017
RoS Research (Luke) _ 9/13/2017-11/30/2017
Hardware Cost Research (Luke) H 10/15/2017-10/31/2017

Full pipeli

Completely finishthe robot sample creation and setup _ 12/20/2017 - 1/26/2018

propriocepti control and report message architecture H 1/19/2018-2/9/2018

Design/architecture diagram for client-facing server - 2/9/2018-2/16/2018

Implementation of client-facing server _ 2/13/2018-3/9/2018

ation of the front-end B =/o/20:8- 2230201

Testingand test environment for client-facing server H 3/23/2018-3/30/2018
Integration and integrated testingand finish touchups l ‘ 3/30/2018-4/6/2018
ionand d i i 4/6/2018- 4/14/2018

Project Budget

@® Hardware, software, and/or computing resources

Lynx motion johnny 5 robotics kit: $879.99
http://www.robotshop.com/en/lynxmotion-j5c-kt-johnny-5-kit.html

Pan tilt kit for robot head: $29.93
http://www.robotshop.com/en/lynxmotion-pan-and-tilt-kit-aluminium2.html

Robot shocks: $15.99
http://www.robotshop.com/en/actobotics-aluminum-robot-shocks-pair.html

Blackbird 1 3D FPV Camera: $89.00
http://www.robotshop.com/en/blackbird-1-3d-fpv-camera.html

6V battery: $26.95 http://www.robotshop.com/en/6v-2800mah-nimh-battery.html
12V Battery Pack: 48.99
https://www.robotshop.com/en/120v-2800mah-rechargeable-nimh-battery-pack.html
Raspberry Pi 3 Ultimate Kit: $102.67
https://www.robotshop.com/en/raspberry-:pi-3-:ultimate-:kit.html

http://www.robotshop.com/en/lynxmotion-pan-and-tilt-kit-aluminium2.html
http://www.robotshop.com/en/actobotics-aluminum-robot-shocks-pair.html
http://www.robotshop.com/en/blackbird-1-3d-fpv-camera.html
http://www.robotshop.com/en/6v-2800mah-nimh-battery.html
https://www.robotshop.com/en/raspberry-pi-3-ultimate-kit.html

Generic M2.5 Nylon Hex M/F Spacer/Screw/Nut Assorted Kit, for Raspberry: $11.99
https://www.amazon.com/Generic/Spacer/Assorted/Raspberry/Pi/Standoff/dp/B014J1
ZLD6

Monoprice Feet USB 2.0 A Male to A Male 28/24AWG Cable ;Gold: $4.25
https://www.amazon.com/Monoprice-1-:5&8#45:Feet-:24AWG-:Plated
-105441/dp/B009GUXGI2/ref=sr 1 157s=wireless&:ie=UTF8&qid=1508
887105&sr=18-:15&:keywords=usb+:cable

12V NiMH / NiCd Smart Charger: $21.95
http://www.lynxmotion.com/p-:602-:6-:12v-:nimh-:nicd-smart
-charger.aspx

ZILU Smart Power Basic 4400mAh Portable Charger External Battery Pack Backup:
$14.90

https://www.amazon.com/gp/product/BOOMWV1TJ6/ref=as at?creativeASIN=BOOMWYV
1TJ6&linkCode=w50&:tag=mak041-:20&:imprToken=XkZOfOfTNscH
dyVfluncMA&:slotNum=1

Wiring Harness; Battery Connector: $4.95
http://www.lynxmotion.com/p-:497-:wiring-:harness-:battery-:con
nector.aspx

Standard Servo: $16.29
http://www.lynxmotion.com/p-719-:hs-:485hb-83-0z-:in
5:standard-:servo.aspx

ZIYUN,Sabertooth Dual 5A DC Motor Driver: $136.31
https://www.amazon.com/ZIYUN-Sabertooth-currents-achievable-differential/dp/B076
Q58KGL/ref=sr 1 14?ie=UTF8&qid=1517435916&sr=8-14&keywords=sabertooth+mot
or+driver

Server Hosting by KUIT: Free

@® Estimated cost

Total robot cost: $1361.27 + tax

@® When they will be required? Already received all parts.
Work Plan

Luke Dercher (SCRUM master) will be taking over the creation of the robot software
layer in the CoE team’s absence. A robot kit with minimal hardware assembly will be
used instead of the one intended to be provided by the ex CoE team.

Sri will work on building the server backend and front-end, security issues, and will
pitch in and help other teammates with other aspects of the project.

Paul will be working on the design and implementation of Video services, frontend and
backend implementation and will be assisting Luke on implementing his work on the
robot software layer.

John will work on system architecture, back end development, and design and
development of the front end application

https://www.amazon.com/Generic/Spacer/Assorted/Raspberry/Pi/Standoff/dp/B014J1ZLD6
https://www.amazon.com/Generic/Spacer/Assorted/Raspberry/Pi/Standoff/dp/B014J1ZLD6
https://www.amazon.com/Monoprice-1-5-Feet-24AWG-Plated-105441/dp/B009GUXG92/ref=sr_1_15?s=wireless&ie=UTF8&qid=1508887105&sr=1-15&keywords=usb+cable
https://www.amazon.com/Monoprice-1-5-Feet-24AWG-Plated-105441/dp/B009GUXG92/ref=sr_1_15?s=wireless&ie=UTF8&qid=1508887105&sr=1-15&keywords=usb+cable
https://www.amazon.com/Monoprice-1-5-Feet-24AWG-Plated-105441/dp/B009GUXG92/ref=sr_1_15?s=wireless&ie=UTF8&qid=1508887105&sr=1-15&keywords=usb+cable
http://www.lynxmotion.com/p-602-6-12v-nimh-nicd-smart-charger.aspx
http://www.lynxmotion.com/p-602-6-12v-nimh-nicd-smart-charger.aspx
https://www.amazon.com/gp/product/B00MWV1TJ6/ref=as_at?creativeASIN=B00MWV1TJ6&linkCode=w50&tag=mak041-20&imprToken=XkZOfOfTNscHdyVfIuncMA&slotNum=1
https://www.amazon.com/gp/product/B00MWV1TJ6/ref=as_at?creativeASIN=B00MWV1TJ6&linkCode=w50&tag=mak041-20&imprToken=XkZOfOfTNscHdyVfIuncMA&slotNum=1
https://www.amazon.com/gp/product/B00MWV1TJ6/ref=as_at?creativeASIN=B00MWV1TJ6&linkCode=w50&tag=mak041-20&imprToken=XkZOfOfTNscHdyVfIuncMA&slotNum=1
http://www.lynxmotion.com/p-497-wiring-harness-battery-connector.aspx
http://www.lynxmotion.com/p-497-wiring-harness-battery-connector.aspx
http://www.lynxmotion.com/p-719-hs-485hb-83-oz-in-standard-servo.aspx
http://www.lynxmotion.com/p-719-hs-485hb-83-oz-in-standard-servo.aspx
https://www.amazon.com/ZIYUN-Sabertooth-currents-achievable-differential/dp/B076Q58KGL/ref=sr_1_14?ie=UTF8&qid=1517435916&sr=8-14&keywords=sabertooth+motor+driver
https://www.amazon.com/ZIYUN-Sabertooth-currents-achievable-differential/dp/B076Q58KGL/ref=sr_1_14?ie=UTF8&qid=1517435916&sr=8-14&keywords=sabertooth+motor+driver
https://www.amazon.com/ZIYUN-Sabertooth-currents-achievable-differential/dp/B076Q58KGL/ref=sr_1_14?ie=UTF8&qid=1517435916&sr=8-14&keywords=sabertooth+motor+driver

Github link

We are storing our code in multiple repositories within a single Github organization. All
repositories will be publicly viewable and open source. We are using Trello and Slack for
planning and communication. Here is the link to our GitHub page.
https://github.com/KUSeniorDesignWebRobot

Final Project Design

The platform will exist in three primary domains: a robot layer built on top of Debian, a
server layer, and a front-end web application.

The server layer will handle the transmission of messages between the robot and web
client, message translation, authentication, data storage, and video processing. It will be
based on a service oriented architecture to allow for horizontal scalability and easier testing
and development. There will be three publicly exposed services, a web client interface, a robot
client interface, and the video processing service (if time applicable). All other services will be
accessible through internal DNS to limit potential attack surfaces for security. Internal
communication will happen through HTTP, TCP/UDP, and a RabbitMQ message broker. The
message queue will handle all messaging which does not require a prompt response, including
but not limited to messages between the web client and robot during processing and
diagnostic messaging. RabbitMQ is a scalable implementation of AMQP (Advanced Message
Queuing Protocol) with clients available for most commonly used languages. Using a pub/sub
message queue for internal communication rather than pushing messages with HTTP or TCP
allows for tolerance of moments of high load and the potential for automatic scaling during
peak usage.

Other technologies we will use on the server include PostgreSQL, Redis, and NodeJS.
PostgreSQL is a feature rich relational database. PostgreSQL offers indexed semi-structured
data document storage functionality, which we will use in lieu of a dedicated document storage
engine like MongoDB for caching, schema-less document storage, and storage of immutable
data which lends itself to a key-value retrieval method. All other long term data storage will be
stored in a relational structure. We will also use Redis, a primarily in-memory key-data
structure store for transient or volatile document storage which requires high speed access.

Our services will be written primarily in NodeJS. NodedS is particularly performant in 1O
bottlenecked tasks, which we anticipate will be the primary performance restriction. Node is
also easy to rapidly prototype with and has impressive speed for an interpreted / just in time
compiled language. Its single threaded nature is not limiting due to our plans for a horizontally
scalable system, as we will be able to spin up more worker nodes for most services as needed.

We will use Websockets for communication with the Webclient and ZeroMQ for
communication with the Robot. Websockets are a secure standard for full duplex
communication between a web browser and a server with good levels of modern browser
support. ZeroMQ is a brokerless, secure message protocol which works over TCP and UDP.

https://github.com/KUSeniorDesignWebRobot

ZeroMQ can handle large message sizes (including video) at high speed and has clients
available for many common languages.

Our service oriented architecture design will likely require additional services that we
will not realize the necessity of until later in the development process, but a few of the services
we plan on implementing are:

e REST API for web client (includes much of the traditional web app type functionality)
e Translation service (for translating user input into the required format specified by the
robot’s manifest)

Monitoring service (tracks latency metrics and session statistics)

Session moderator service for setting enforced latency and managing the creation and

termination of sessions

Robot facing endpoint

Web client facing websockets endpoint for message passing

Monitoring
Service

Torill B . [P\ Translation [T ™ gession [~ —
Web Client Service Moderator obo P CEPRITREeS
€= e e [== Endpoint

Endpoint
Web Robot
Client SElE Client
(user)

Idv 153

B 4

ujodpug
124008 aAN

Message
Queue

-

PostgreSQL Redis

g

—
HTTP(S)
...........)

ZeroMQ/
Websocket

We originally planned on implementing a live object detection system using the YOLO
framework, but we removed this goal due to time constraints.

The video bandwidth expected is around 8 to 15 fps. For higher FPS we can enjoy
more control over how the “users” interact and get feedback from the robots. For lower FPS,

however, we will have to include limiters in the functionality of the robots from the “user’s
perspective in order to maintain a clean control of the program and hardware. We don’t yet

" High level software architecture diagram

know what kind of latency to expect regarding video and this is a major point of research we
will have to undertake to get a workable model for our devices.

We have devised our own message format for communication with the robot. The
messages will be passed in JSON. Each message has a timestamp for when it was issued and
a variety of metadata, including unique identifiers for all relevant constructs. The primary
message types are report and command messages which give sensor information and
instruction information respectively. These messages include a list of sensor/actuator unique
identifiers, a time-to-live, and a value. Multiple instructions or sensor measurements can be
sent in a single message given that they are issued with the same timestamp. Communication
will be session based, use public-private key encryption, and based on a request-reply pattern
within ZeroMQ for security purposes. Messages to the robot will have an enforced latency in
order to keep the latency of commands consistent. We believe that longer but predictable and
stable latency is preferable to shorter but inconsistent latency when it comes to robotic control.
The timeline of a session is as follows:

e Powered on and web connected robot enters a standby mode, long polling the server
to indicate availability. During this phase the robot sends a manifest document to the
server. The manifest contains a complete list of all registered actuators and sensors
along with descriptions and accepted value ranges.

e The server replies to the robot and asks to initiate a session when an authorized user
starts a connection.

e The robot accepts the request to begin a session and sends necessary session
information such as public keys necessary for authentication.

e The server attempts to recall a configuration that matches the manifest requirements if
one exists. If a matching configuration does not exist, the user is prompted to create
one.

e The session is initiated, and communication and control begins.

o Long Polling, send manifest
Accept session, send session dala "
o Accept session, send session dala
Server Robot
Session inifialized
‘ .. P
B N e
HTTP(S)
............. ’
ZeroMQ
generic msg type
+ field: msg_id
+ field: msg_type
+ field: robot_id
+ field: configuration id
+ field: session_id
+ field: mac
termintation report command
+ field: type + field: sensor_id list + field: actuator_id list
+ field: source + field: il + field: il
+ field: info + field: value + field: value

2 Robot-server session initialization process
3 UML Diagram of the robot message protocol specification

The front end web client application will allow for configuration and control of our
platform. It will be built with AngularJS as a Javascript framework. It will be built in the style of
a Single Page Application (SPA), and will interact with the REST API endpoint for all actions
except robot message passing. This design keeps with our overall design philosophy of
separate coordinating applications/services. We will use various web technologies such as
Babel, Passport, Gulp, SASS, and Bootstrap.

Ethical and Intellectual Property Issues

Ethical issues for this project are mostly concerned with the security and privacy of the
information being transmitted by end users over the internet. To protect this information, we
are using end-to-end encryption with Public-Private keys. To further improve this, user logins
are password secured and the entire server is locked down with administrative rights.

Ethical concerns regarding the use of the system can be traced to improper use of the platform
to control robotic agents to perform unethical actions. Without the security of the users and
the robotic agents, for example, unauthorized users could gain control over the robotic agents
of another party or gain access to local information stored on the server or the robot. Another
such unethical action would be to control the connected robot to perform unethical actions
such as hurt another person or another person’s property, to surveil another person without
their permission or generally to use the telerobotics system in “bad faith” of the community it is
being used in.

For intellectual property concerns, our robot and various other parts of platform will be using
open source packages and tools. We need to cite them properly in our design specification
according to what their licenses say. This is not only an ethical concern, but a legal concern as
well. If we do not give the authors of the software we use the credit they are legally mandated
to then this will be an intellectual property issue.

For our own licensing, we have chosen to go with the MIT license. “As of 2015, according to Black
Duck Software and GitHub, the MIT license was the most popular free software license, with the GNU
GPLv2 coming second.” (Wikipedia - MIT License)

Change Log

e A major change to the proposal is that we lost our computer engineering component of
our team. This was half of our members we initially had.

e The project’s budget has changed drastically since our initial plan. This is due to the
fact that we previously thought the computer engineering team would be providing us
with a robot.

e We also now know we’re going to be using the school’s servers, so the expense of
using AWS is no longer a concern. Removed server cost calculations from the budget
section.

Our milestones and goals for first and second semester have changed.
We will no longer be implementing an object detection system

10

